
ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 25.-27.05.2022. 

 

224 

OPTIMIZATION OF PRISM SURFACE SHAPE  

IN INTERACTION WITH FLUID FLOW 

Kristaps Spade1, Janis Viba1, Martins Irbe1, Shravan Koundinya Vutukuru1, 2 
1Riga Technical University, Latvia; 2MLR Institute of Technology, India 

kristaps.spade@rtu.lv, janis.viba@rtu.lv, martins.irbe@rtu.lv, vshravankoundinya1989@gmail.com 

Abstract. The interaction of the lateral surface of an axially cylindrical prism with the fluid flow is studied. The 

prism moves in a translational motion (without rotation) in a fixed fluid, such as air. The effectiveness of such a 

reduced interaction analysis is important in reducing vehicle drag as well as increasing the speed of technical sports 

vehicles. Accordingly, the task of increasing the interaction forces involves extracting energy from the fluid. In 

the mathematical problem, the force of resistance of the prism to fluid movement, its minimum or maximum value, 

is chosen as the optimization criterion. The interaction between the prism and the fluid is described in an 

unconventional way, without using the concepts of drag and lift forces, but using the relationships of classical 

mechanics. For this purpose, the interaction of the prism with the fluid is divided into two zones: the pressure zone 

(in front of the prism) and the suction zone (at the back of the prism). Interactions with changes in the amount of 

motion of a fluid in a differential form are obtained. The relationships found are integrated in the simplest cases: 

for example, when the surfaces of a prism are broken planes. Two dominant forms of the prism are considered: 

the surfaces are only convex or the surfaces are only concave. Parametric optimization problems are solved 

numerically with a computer. As a result, optimal shapes are obtained for the minimum criterion and the maximum 

criterion. The main result of the research is the application of a new theory of fluid mechanics, which allows 

analytical or numerical solving of analysis, optimization and synthesis problems with the obtained formulas, 

without the use of space time programming, which would need to change the object shape, flow rate and direction 

in almost every integration step. 
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Introduction 

The application of vibration motion to human activities in the environment is very common and 

well-studied. Fluid flow is widely used to excite vibrations [1-3]. The most important indicator in the 

calculation of the fluid flow interaction is the force acting on the object. Experimental drag andlLift 

coefficients are mostly used in existing force calculation methods [4-6]. Another approach is used in 

this work, when the force on the frontal pressure side is determined by the laws of classical mechanics, 

which can be traced back to Newton’s work [7-14]. In addition, the suction on the outlet side is observed 

with one constant C, which has a very narrow range of values, bounding around C = (0.25-0.50) [15-

18]. This approach makes it possible to obtain analytical interaction force formulas that contain the 

geometrical parameters of the prism, such as the face length and the face position angle. As a result, a 

methodology for optimizing the interaction force is developed and the optimization results for a curved 

and concave prism are given. In addition, the obtained results are illustrated by modelling a continuous 

environment with a computer Ansys Fluent Pressure-Based Steady state 2D flow analysis. It is shown 

that by changing the shape of the prism, it is possible to induce fluctuations in the constant fluid flow, 

which can be used for energy production. The present work shows the advantages of approximate 

analytical formulas in shape optimization when fluid interacts with a broken plane. To solve such a 

problem with a standard fluid dynamics program would require a large consumption of resources in a 

two-dimensional space, changing the lengths and angles when calculating the criterion. Instead, the 

surface of the response, calculated analytically with the found force formula, is shown. As expected, the 

optimal solutions lie on the constraints of a parameter. In general, it should be noted that the numerical 

methods of fluid motion and interaction with objects require large material resources, as the results 

depend not only on the shape of the objects, but also on the rules of the onset of fluid motion. In addition, 

there are problems in comparing the obtained numerical results with experimental tests in suction wind 

tunnels, which do not correspond to the natural process. 

Analytical 2D convex and concave plane body interaction with fluid flow model 

The two-dimensional shape is described in the following Fig. 1. Consider a prism symmetric to the 

flow rate V0 with a side width B that is constant. Accordingly, the width L and the height H of the prism 

are also constant. 
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Fig. 1.  Two dimensional (x-y plane) curved line model (A); Two convex planes (B);  

Two concave planes (C): V0 – fluid flow velocity before obstacle; L – half the width of  

the prism; F – force of frontal interaction; H – height of the prism; B – side length of the prism 

Optimization problem of given prism with the length B and shape characterising function f(x) can 

be formulated as follows: 

1. The boundary conditions for given shape of model are y = f (x); y (x = 0) = H; and at y (x = L) = 0. 

The task is to find the optimal shape of f (x) that provides the minimum flow force F if the feed rate 

is V0. The importance of the task increases if it is possible to obtain energy savings; 

2. And task is similar for the second case where is also taken up the criterion: to find the shape of the 

model f (x) that provides the maximum flow force F. In this case, the task would be important in 

energy production systems. 

To solve the shape optimization task from Fig. 1 the following analytical relationships (1) and (2) 

are obtained: 
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 0=F  for Supermum; infimum, (2) 

where dN, dF – components of the local normal force and local axial force, N; 

 dl – length of local arc, m; 

δF – variation of force F inside limits or on the boundary limits (in case Supremum, 

infimum). 

One way to solve such a shape optimization problem is to choose a polynomial shape as follows 

(3): 
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where C1, C2, C3 – constants. 
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The main disadvantage of this method is the large computational capacity, finding the polynomial 

constants and forming a real shape from them, which will probably depend on the flow rate V0. 

Therefore, in our work, let us look at another simpler form, which consists of two planes, as an example 

(Fig.1. A, B). 

First Task – model of two convex planes, Fig 1. A. 

Consider the form that differs from the shape of a polynomial in that it is formed by two straight 

lines (prism side planes) with L = H, Fig. 2. 

 

Fig. 2. Two convex plane model L = H: L1, β1 – parameters of the first plane;  

L2, β2 – parameters of the second plane 

In the next step it is needed to develop a mathematical relation for each of the lengths L1 and L2. 

According to the authors’ new theory of calculating the interaction force F for a flat convex broken 

plate, the following formula should be used (4) [18]: 

 ( ) DLBVCF += 201 . (4) 

Here 
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where C – constant, approximately 0.5;  

 V0 – flow velocity;  

 ρ – density of flow;  

 l1, l2, L – parameters of broken plate;  

 β1, β2 – orientation angles of plate parts. 

It can be deduced from expressions (4), (5) that the variable part of the interaction force F is a 

function D (5). Therefore, when optimizing this function, the following relationships between the 

lengths l1, l2 and the angles β1, β2 (6) must be observed (6): 

 
( ) ( )

( ) ( ).sinsin

,coscos

2211

2211





+=

+=

LLH

LLL
 (6) 

From expressions (4)-(6) it can be concluded that the optimization problem must be solved 

numerically. Here we illustrate the case when L = H = 0.2 m. Then the optimization criterion D takes 

the following expression (7): 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1221

3

21

3

212

3

1

3

12

sincos0.1sincos

sinsin0.1coscoscoscos0.1cossin





−

−+−
=D . (7) 

The results of the optimization problem from expression (7), when the angles β1, β2 change, are 

graphically shown in Fig. 3. Here, the values of the coefficient D are plotted as the surface of the criterion 

in three-dimensional space. Conclusions about higher and lower criterion values are given in the 

description of the drawing, Fig. 3. 
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Fig. 3. Maximum and minimum drag force depending on convex plane angle 

Fmax is at β1 = 0; β2 = π/2 (90°). Fmin is at β1 = β2 = π/4 (45°)  

Second Task – model of two concave planes, Fig 1. B. 

In the case of a concave prism surface, the criterion D1(x, y) was expressed as a function of the 

coordinates x and y of the breaking point. The resulting expression is quite long and is not inserted here. 

Numerical optimization results D1 at similar parameters L = H = 0.2 m are shown in Fig. 4. 

 

Fig. 4. Maximum and minimum drag force depending on concave plane angle 

Fmax is at region, y = 0 and 0 < x < L = 0.2; The minimum force is at β1 = β2 = π/4 (45°) or x = y 

Numerical fluid flow calculations by Ansys Fluent 

In order to understand and evaluate the theoretically obtained optimization results, the interaction 

modelling was performed with Ansys Fluent. Pressure-Based Steady state 2D flow analysis is done with 

k-ω SST viscous model. The air is the fluid with constant density ρ = 1.225 kg·m-3. The length of planes 

L1 = L2 = 1 m. For modelling five geometries are created, Fig. 5, where for models 2-3 the condition 

L = H is retained. 

 

Fig. 5. 2D model shapes and detected drag coefficient CD 

Simulation of the pressure on the 2D body in Fig. 6 showed that the detected drag coefficient for 

models of concave planes and curved planes changes significantly. 
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Fig. 6 Pressure distribution for 2D model shapes 

In Fig. 7. in detail is showed pressure distribution on the frontal face of planes. 

 

Fig. 7. Frontal pressure distribution of 2D models shapes 

Results and discussion 

1. It is not appropriate to use drag and lift coefficients to describe the fluid flow interaction, as these 

must be determined experimentally in advance. 

2. It is desirable to describe the interaction between a fluid and an object with a change in the amount 

of fluid motion in a differential form [16-18]. This results in the analytical relationships already 

described in Newton’s work. 

3. Calculation of parametric optimization of the prism shape of a broken, flat plate has been performed. 

The calculation shows which shapes are optimal, depending on the chosen criterion: whether the 

minimum or maximum force should be obtained. 

4. With computer modelling “Fluent” qualitatively confirmed the theoretical studies, which show that 

the force of interaction in concave prisms increases significantly, even 1.8 times. This fact is used 

in energy production systems. 

Conclusions 

1. The main result of the research is the application of a new theory of fluid mechanics, which allows 

analytical or numerical solving of analysis, optimization and synthesis problems with the obtained 

formulas. 

2. Optimization of the prism shape is performed in the work, which gives information in the synthesis 

of new shapes that can be used in the synthesis of real mechanisms with mechatronic control, for 

example, to switch from one shape to another to obtain energy from oscillating flow. 

3. The work shows that the cavities of the object significantly increase the interaction forces 

approximately doubling them. In the calculations, the cavities must not be approximated by flat 

covers based on the present research. 
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